X-ray Characterization of Cement-based Materials: Previous Applications & New Opportunities

Kimberly Kurtis
School of Civil and Environmental Engineering
Georgia Institute of Technology
Atlanta, Georgia

Collaborators:

CXRO at ALS: G. Denbeaux, A. Lucero

UC Berkeley: P.J.M. Monteiro

Georgia Tech: A.P. Wilkinson, A.C. Jupe, N.N. Naik

APS: P. Lee

NIST: P. Stutzman

IBNAM at Northwestern Univ.: S.R. Stock

What are cement-based materials?

Any material that uses a mineral cement as a binder

Classes of mineral cement: portland (calcium silicate-based) and calcium aluminate, some dental and bone cements

Cement paste =

Mortar =

+

Concrete =

Why research cement-based materials?

Concrete is the most widely used building material, with more than 12 billion tons of placed annually.

Annual Regional Cement Consumption, million tons

	1994	2000	2005
Europe*	313	393	432
Asia	680	853	1000
Middle East	65	79	82
Africa	63	71	77
North America	90	92	92
South&Central Am	118	142	
Misc.	7	9	10
Total	1310	1625	1835

^{*} World Cement, V27(5).

Why research cement-based materials?

Increasing infrastructure demands

- increasing population
- construction in more aggressive environments
- increasing performance expectations

Environmental concerns

- energy consumption
- CO₂ production
- durability

Why research cement-based materials?

Despite the widespread use of cement-based materials, fundamental understanding is lacking with regard to:

- chemistry and structure during manufacture
- hydration chemistry
- nano and microstructure of cement-based materials
- behavior under load (fracture and creep) and during shrinkage
- structure-property relationships
- durability
- effect of combinations of loading and environmental exposure

These gaps limit our ability to reliably produce cement-based materials with specialized physical and mechanical properties and that exhibit long-term durability.

Challenges Associated with Characterization of Cement-based Materials

- Hydrated systems that change with removal of water
- Optically opaque materials, but sub-surface or volumetric characterization is often desirable
- Complex materials that are heterogeneous on multiple scales (nano → micro → meso → macro)
- Want to resolve the smallest features of the structure, while still capturing the different spatial structures that comprise the whole
- Effect of time can be important → fast imaging
- Non-destructive characterization is desirable

Structure of cement-based materials

Concrete is heterogeneous on multiple scales

1-5 nm Ult. strength Adsorption

Interparticle

C-S-H sheets

0.001 µm

1 nm

<50nm Shrinkage Creep **Durability**

Applications of X-ray Imaging

- Cement production
- Cement hydration
- Behavior under loading
- Degradation/durability

Cement Production

Cement Production

Studies to date in this area have almost exclusively relied upon synchrotron powder diffraction, rather than imaging.

De La Torre, Bruque, Campo, and Aranda, *Cement and Concrete Research*, 32:1347-56 2002.

Fig. 1. SXRPD Rietveld plot for C3S. The inset shows the fit to the most representative region for C3S.

Cement Production: Would Imaging be Useful?

An anologue in geochemistry: combined μSXRF- μSXRD for elemental mapping on a soil nodule.

Combined with µEXAFS to

Cement Production

Research opportunities exist in:

- Identification of phases existing in unhydrated cement and clinker
- Quantification of those phases
- Characterization of phase structure as influenced by the introduction of hazardous and non-hazardous (introduced for improved production or hydration) impurities
- In situ characterization at high temperature (to 1500 C)

Cement Hydration

When water is added to cement, what happens?

- Dissolution of cement grains
- Growing ionic concentration in "water" (now a solution)
- Formation of compounds in solution
- After reaching a saturation concentration, compounds precipitate out as solids ("hydration products")
- In later stages, products form on or very near the surface of the anhydrous cement

Cement Hydration

Very generally, portland cement hydration proceeds by:

$$\frac{3\text{CaO} \cdot \text{SiO}_2}{2\text{CaO} \cdot \text{SiO}_2} \longrightarrow \text{C-S-H} + \text{Ca(OH)}_2$$

Cement Hydration: EDXRD

Rapid data acquisition allows for in situ monitoring of cement hydration in real time

An intermediate in the hydration of C₃A (or 3CaO•Al₂O₃) was definitively identified using timeresolved EDXRD at Daresbury SRS.

XM-1: Beamline 6.1.1 at ALS

XM-1 is operated and maintained by the Center for X-ray Optics (CXRQ)

Cement Hydration: TXRM

Examination of hydration of calcium sulfoaluminate cements (Kleinite $C_4A_3\overline{S}$ or $4CaO\cdot3Al_2O_3\cdot SO_4$)

17

Cement Hydration: TXRM

Tiles composed from X-ray images of mixture of 30.0% $C_4A_3\bar{S}$ + 53.4% $C\bar{S}$ + 16.5% C (by mass) after 4.5 hours in saturated calcium hydroxide + 0.1 M CaCl₂ solution, w/s=10

Cement Hydration: TXRM

- Investigation of thermal treatment on hydration of low-energy, β-2CaO-SiO₂ rice hull ash cements.
- RHA cements processed at higher temperatures (150°C vs. 130°C) reacted more rapidly, with products visible through TXRM at earlier ages and with greater abundance.

2400x; λ =2.4nm

Pozzolanic Reaction: TXRM

- Reaction of finely divided silicates in alkaline calcium-rich solutions generally resulted in products with dendritic microstructure
- The 'sheaf of wheat' morphology was particularly prevalent

Tiled x-ray images of chemical grade silica gel after 2 hours in saturated Ca(OH)₂ solution.

Pozzolanic Reaction: TXRM

Reaction of silica gel in 0.7M NaOH + 0.1M CaCl₂ solution over time results in development of "sheaf of wheat" microstructure. 2400x; λ =2.4nm

Pozzolanic Reaction: Ca-edge Spectromicroscopy using TXRM

Transmission Soft X-ray Microscopy at XM-1

Advantages

- Designed for ease of user operation
- Samples can be studied wet
- No artifacts from drying or pressure change
- Able to observe and record ongoing reactions
- High resolution (43 nm)
- Characterization of internal structure
- Identify areas of elemental concentrations

Limitations

- Small sample size nearly 2D imaging
- High solution-to-solid ratio needed for transmission
- Limited spectromicroscopy capabilities
- Limited availability

Cement Hydration: Synchrotron Microtomography

Image: S.R. Stock, Northwestern Univ.

- 5 μm voxels, 21 keV
- Brighter spots are likely calcium hydroxide
- Technique could be useful for quantification in blended cement (portland-pozzolan) systems

Cement Hydration : Synchrotron Microtomography

Introduction of toluene to cement paste results in large voids or vesicles in the hardened material, likely initially filled with the hazardous organic waste.

Cement Hydration: Synchrotron Microtomography

Very small(~1mm) samples of calcium phosphate (bone) cement on bone have been examined by phase-contrast microtomography.

Cement Hydration

Research opportunities exist in:

- Nanoscale characterization (structure and composition) of C-S-H
- Coupled imaging and phase identification (diffraction?) in simplified and complex systems at realistic water-to-cement ratios
- Characterization of cement hydration at low and high temperatures and at high temperature and pressure (oil well applications)
- Time-resolved characterization (imaging and quantification) of the effects of chemical admixtures and "green" supplementary cementing materials on reaction kinetics, chemistry, and structure

Loading

- Establishing true structure-property relationships has been challenging because of the multi-scale heterogeneity of cement-based materials
- Concrete is considered to be a 3 phase material: paste or mortar fraction
 + coarse aggregate + agg/paste interface

Loading: Synchrotron Microtomography

- Microtomography at BL X2B (NSLS) was used to examine internal cracking in 4x8 mm cylindrical mortar samples under compression
- Data describing the three-dimensional crack surfaces generated was related to fracture energy, by dW/dA = d(F-U-C)/dA

Loading

Synchrotron-based research opportunities exist in:

- Fracture in ultrahigh performance "concretes"
- Strength, stiffness measurements of individual components, for modeling complex materials
- Creep in cement paste
- Damage propagation due to combinations of loading and environment

Durability

- Sulfate attack, including thaumasite formation
- Alkali-silica reaction
- Delayed ettringite formation
- Leaching
- Acid attack
- Carbonation
- Abrasion
- Erosion
- Freeze/thaw
- Fire
- Corrosion of reinforcing steel

Durability: TXRM

Alkali-Silica Reaction

"Dry" ASR gel; Not in solution

ASR gel in 0.05M NaOH at pessimum proportion

ASR gel in 0.7M NaOH at pessimum proportion

Durability: TXRM

Examination of the effect of chemical additives to control expansion by alkali-silica reaction

After 1 week in 0.7M NaOH + 10% acetone

After 1 week in 0.7M NaOH + 0.1M LiCI

Durability: Confocal X-ray Imaging

 Optical sectioning is limited to transparent materials

3 mm

K.E. Kurtis, N.H. El-Ashkar, C.L. Collins, and N.N. Naik, *Cement & Concrete Composites*, October 2003, V.25(7):695-701.

C.L. Collins, J.H. Ideker, and K.E. Kurtis, *Journal of Microscopy*, Feb 2004, V.213(2):149-157.

This material is based upon work supported by the National Science Foundation under CMS-0074874. Any opinions, findings, and conclusions or recommendations expressed in this material are those of the author(s) and do not necessarily reflect the views of NSF.

Durability: Confocal X-ray Imaging

LiNO₃, Li/Na=1.0, 3 days

LiNO₃, Li/Na=1.0, 8 days

LiOH, Li/Na=0.50, 1 day

- Lathlike reaction products apparent at the aggregate/cement interface in the presence of lithium only.
- Technique could also by used for characterization of cement hydration products formed via bottle hydration and at aggregate/paste interfaces

Durability: TXRM

In situ study of corrosion of steel filings

Kurtis, K.E., Meyer-Ilse, W., and Monteiro, P.J.M., Corr. Sci. 42:1327-36.

Durability: Synchtrotron Microtomography

The first synchrotron imaging of cement-based material found in the literature reports sulfate damage to an epoxyimpregnated 3.5mm-diameter sample cored from a standard mortar bar, as examined by Bentz and coworkers (1995) at BL X-2B at NSLS

- 70 kVp x-ray tube
- Detector with 2048 x 64 elements and 24μm pitch
- After identifying the top of the sample via scout view, 390 slices were imaged 50µm apart (4.5 hours/sample)

S.R. Stock, N.N. Naik, A.P. Wilkinson, and K.E. Kurtis, *Cement and Concrete Research*, October 2002, V.32:1673-5. N.N Naik, A.C. Jupe, S.R. Stock, A.P. Wilkinson, and K.E. Kurtis, *Cement and Concrete Research*, in review.

This material is based upon work supported by the National Science Foundation under CMS-008482. Any opinions, findings, 36d conclusions or recommendations expressed in this material are those of the author(s) and do not necessarily reflect the views of NSF.

■ Type I cement paste-aggregate sample at w/c = 0.485 and exposed to 10,000 ppm of sulfate ions in sodium sulfate solution

7 weeks

17 weeks

29 weeks

	Linear attenuation coefficient, μ cm ⁻¹)								
Time	21 weeks		36 weeks		42 weeks		52 weeks		
	Αν μ	Std. dev.	Αν μ	Std. dev.	Αν μ	Std. dev.	Αν μ	Std. dev.	
A1	-		-		-		2.0	0.1	
A2	-		-		-		1.7	0.2	
A3	2.2	0.1	2.0	0.1	2.2	0.1	2.0	0.1	
A4	2.3	0.2	2.0	0.1	2.0	0.1	2.0	0.2	
A5	-		-		1.3	0.1	1.5	0.1	

- A less dense region with darker color is observed near crack C1.
- The less dense region adjoining the crack (A5) is proposed to be due to leaching of calcium hydroxide, decalcification of C-S-H, or some other dissolution process resulting from exposure to the external solution at the cracked surfaces.

EDXRD performed at XOR's 1 ID at APS

A.C. Jupe, S.R. Stock, P.L. Lee, N. Naik, K.E. Kurtis, and A.P. Wilkinson, *J. Applied Crystallography*, accepted for publication.

Fransmission %

N.N. Naik, A.C. Jupe, S.R. Stock, A.P. Wilkinson, and K.E. Kurtis, "submitted to Cement and Concrete Research."

A.P. Wilkinson, C. Lind, S.R. Stock, K.E. Kurtis, N. Naik, D.R. Haeffner, and P.L. Lee, *Materials Research Society Symposium* 42 *Proceedings Series*, V. 678, EE5.3.1, San Francisco, CA, April 14-20, 2001.

Durability: Lab microtomography with EDXRD and SEM

Durability

Some opportunities for further synchrotron-based research:

- In situ imaging for damage process monitoring
 - imaging at variable temperature, RH
- Combined imaging and chemical/phase analysis
 - adequate resolution to capture changes in small capillary pores (5-50 nm) and to detect microcracks
- Post-imaging quantitative analysis to measure crack surface area, pore connectivity, etc., which can then be used to link composition and performance
- Simply too many high-value potential applications to list here...

Concluding Remarks

X-ray imaging affords some clear benefits for the characterization of cement-based materials, including

- Non-destructive examination and/or sectioning of opaque cement-based materials
- High resolution
- Rapid data acquisition
- Characterization of hydrated samples at normal temperature and pressure, if desired.

Concluding Remarks

Developments which would be beneficial for researchers in the cement-based materials community include:

- Coupling of imaging and diffraction or elemental analysis
- Sample indexing systems which function between beamlines
- Dedicated beamlines for imaging, avoiding complicated and time-consuming set up and break down
- User support for imaging, reconstruction, and analysis
- Ability to image larger samples, even at lower resolution
- On-site microscopy/tomography facilities for sample pre-view, to locate regions of interest
- Imaging at resolution < 50nm